top of page


Public·10 members

Azo Coupling Reaction Pdf Free Fixed

One way to transform diazonium salts is by treating them with various compounds of copper. These are known as Sandmeyer reactions, after Traugott Sandmeyer who first discovered the reaction in 1884 (with copper acetylide!).

azo coupling reaction pdf free

The reactions of some metal ions of the third group (M(III)) with azo dyes were studied. Attention was focused on azo dyes with two hydroxy groups in ortho-positions to azo group: eriochrome red B (ERB), eriochrome black T (EBT), eriochrome blue SE (EBSE), calcon (Calc), and kalces (KLC). The chelation is responsible for interaction of these dyes with Al(III), Sc(III), rare earth elements (REE) ions, Ga(III), and In(III). The complexes were studied using vis- and IR-spectrometry. One irreversible peak (P1) of complexes reduction was observed on voltammograms for all studied metal ions. The second peak P2 was observed only for Ga complexes with all investigated azo dyes. Based on the study, the possible mechanism of complexes reduction was proposed. Linear behavior has been found between the reduction peak currents of a set of metal complexes and the concentration of the respective metal cations. This can be used for metal ions determination by voltammetric methods.

In the presence of Al(III), Sc(III), and REE(III) ions, a new peak (P1) is observed at more cathodic potentials (Figure 7), related to the reduction of the ligand involved in the complexation. The authors of [28] explained the potential shift by the involvement of the azo group in complexation, with a consequent stabilization of the nitrogen electrons in the ring, which made it less available to reduction. The reduction of complexes (peak P1) is an irreversible process as is demonstrated by the absence of anodic peaks on polarograms. The peak potentials are pH-dependent. The potentials are shifted to more negative values with pH increases. This indicates the involvement of protons in the rate-determining step during reduction processes of complexes, which is in agreement with the mechanism of free azo dye reduction according to schemes (1) and (2). The response (, A) from complexes is adsorption-controlled:(1)cathodic peaks are symmetric;(2)the slope of a log-log plot of peak current versus scan rate was higher than 0.5 indicating the adsorption-controlled response [30].

REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ.

Compound 2 was synthesized using Suzuki-Miyaura cross coupling reaction as previously reported21. The classical methods for the synthesis of azo compounds are the azo coupling reaction, the Mills reaction and the Wallach reaction22. The mechanism of the Mills reaction involves the attack of aniline on the nitroso derivative in acid media that leads to azobenzene after dehydration of the intermediate23. Here we applied the Mills reaction to the synthesis of azo derivative 4. The designed compound was readily amenable to two-step synthetic route (Fig. 3). The 3-iodo-1-isopropyl-1H-pyrazolo[3,4-d]dypirimidine-4-amine 5 was used as starting material and obtained as described previously21. Intermediate 6 was achieved with copper catalyzed amination at room temperature upon addition of base using L-proline as ligand and aqueous ammonia as nitrogen source24. The final step of the synthesis is the introduction of the azo functionality using the Mills reaction. The acid catalyzed reaction using nitrosobenzene targeted compound 4 in a moderate yield. Double or concurrent azo formation to competing nucleophilic attack of the second amino functionality in the starting material was not observed, likely due to lower reactivity of the pyrimidine amino group.

We have presented the design, synthesis and photophysical/biological characterization of azobenzene-derived photoswitches aiming at photocontrolled RET kinase inhibition. This study represents the first reported example of a photoswitchable small molecule kinase inhibitor. Results from cell-free as well as live-cell experiments clearly show that photoisomerization from the E-isomer to the Z-isomer was readily achieved in situ with a concomitant decrease in the inhibitory effect. Studies aimed at photocontrolled regulation of biological activity are often motivated by potential clinical applications. We anticipate, however, that the results presented in this study will find more immediate value in the development of research tools for resolving quantitative and dynamic aspects of kinase signal transduction. In addition, other reported kinase inhibitors containing functional groups that can be regarded as isosteres of an azo-bridge, could probably be converted to photoswitchable kinase inhibitors using the same approach as herein described. 350c69d7ab


Welcome to the group! You can connect with other members, ge...
Group Page: Groups_SingleGroup
bottom of page